SemEval-2016 Task 2: Interpretable Semantic Textual Similarity

نویسندگان

  • Eneko Agirre
  • Aitor Gonzalez-Agirre
  • Iñigo Lopez-Gazpio
  • Montse Maritxalar
  • German Rigau
  • Larraitz Uria
چکیده

The final goal of Interpretable Semantic Textual Similarity (iSTS) is to build systems that explain which are the differences and commonalities between two sentences. The task adds an explanatory level on top of STS, formalized as an alignment between the chunks in the two input sentences, indicating the relation and similarity score of each alignment. The task provides train and test data on three datasets: news headlines, image captions and student answers. It attracted nine teams, totaling 20 runs. All datasets and the annotation guideline are freely available1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

VRep at SemEval-2016 Task 1 and Task 2: A System for Interpretable Semantic Similarity

VRep is a system designed for SemEval 2016 Task 1 Semantic Textual Similarity (STS) and Task 2 Interpretable Semantic Textual Similarity (iSTS). STS quantifies the semantic equivalence between two snippets of text, and iSTS provides a reason why those snippets of text are similar. VRep makes extensive use of WordNet for both STS, where the Vector relatedness measure is used, and for iSTS, where...

متن کامل

UWB at SemEval-2016 Task 2: Interpretable Semantic Textual Similarity with Distributional Semantics for Chunks

We introduce a system focused on solving SemEval 2016 Task 2 – Interpretable Semantic Textual Similarity. The system explores machine learning and rule-based approaches to the task. We focus on machine learning and experiment with a wide variety of machine learning algorithms as well as with several types of features. The core of our system consists in exploiting distributional semantics to com...

متن کامل

FBK-HLT-NLP at SemEval-2016 Task 2: A Multitask, Deep Learning Approach for Interpretable Semantic Textual Similarity

We present the system developed at FBK for the SemEval 2016 Shared Task 2 ”Interpretable Semantic Textual Similarity” as well as the results of the submitted runs. We use a single neural network classification model for predicting the alignment at chunk level, the relation type of the alignment and the similarity scores. Our best run was ranked as first in one the subtracks (i.e. raw input data...

متن کامل

NeRoSim: A System for Measuring and Interpreting Semantic Textual Similarity

We present in this paper our system developed for SemEval 2015 Shared Task 2 (2a English Semantic Textual Similarity, STS, and 2c Interpretable Similarity) and the results of the submitted runs. For the English STS subtask, we used regression models combining a wide array of features including semantic similarity scores obtained from various methods. One of our runs achieved weighted mean corre...

متن کامل

DTSim at SemEval-2016 Task 2: Interpreting Similarity of Texts Based on Automated Chunking, Chunk Alignment and Semantic Relation Prediction

In this paper we describe our system (DTSim) submitted at SemEval-2016 Task 2: Interpretable Semantic Textual Similarity (iSTS). We participated in both gold chunks category (texts chunked by human experts and provided by the task organizers) and system chunks category (participants had to automatically chunk the input texts). We developed a Conditional Random Fields based chunker and applied r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016